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Evidence that certain man-made chemicals
have the ability to disrupt the endocrine sys-
tems of vertebrates by mimicking endoge-
nous hormones has, in recent years, sparked
intense international scientific discussion and
debate (1). A growing national concern has
resulted in legislation, including reauthoriza-
tion of the Safe Drinking Water Act and pas-
sage of the 1996 Food Quality Protection
Act, mandating that the U.S. Environmental
Protection Agency (EPA) develop a screening
program for endocrine-disrupting chemicals
(EDCs) (2,3). Under this requirement, at
least 15,000 existing chemicals will be experi-
mentally evaluated for their potential to dis-
rupt activities in the estrogen, androgen, and
thyroid hormone systems. A high-through-
put prescreen assay that uses a reporter gene
system may be used to prioritize chemicals
for screening (4). The battery of in vitro and
short-term in vivo screening assays should
optimize hazard identification and provide
guidance for subsequent longer term, more
definitive in vivo tests for toxicity (5). 

Although endocrine disruption can result
from a variety of biologic mechanisms, more
data exist for estrogens than for the other class-
es of activity (6,7). Because in vivo bioassays

are time consuming and labor intensive, a
battery of in vitro and short-term in vivo
assays are proposed to be used as a first screen
for estrogenicity (4). Estrogens regulate the
expression of specific genes and the secretion
of certain hormones, and coordinate diverse
processes such as cell proliferation, cell differ-
entiation, and tissue organization through
pleiotropic actions. Once estrogens reach the
bloodstream, they may remain free or bind to
serum estrogen-binding proteins like α-feto-
protein (AFP) in rodents (8,9) or sex hor-
mone binding globulin (SHBG) in humans
(9). Only the free (unbound) hormone is
able to diffuse into the target cells, where it
binds to the estrogen receptor (ER) to form
a hormone–receptor complex. The prevail-
ing model suggests that this complex then
interacts with an estrogen response element
(ERE) of a target gene and with the tran-
scriptional machinery (10,11). Other estro-
genic effects, such as the secretion of pro-
lactin, are thought to be mediated by the ER
through extranuclear mechanisms that do
not involve transcription (12,13). In con-
trast, the mechanisms underlying the prolif-
erative effect of estrogens are still poorly
understood (14), despite the fact that this

effect is considered the hallmark of estrogen
action, and is the most sensitive and specific
marker of in vivo estrogenic activity (15). 

A series of in vitro assays have been
developed for the detection of potential
estrogens at several steps in the predominant
mechanism of action. Most of these assays
fall into one of three categories: a) ER com-
petitive binding assays that measure the
binding affinity of a chemical for ER; b)
reporter gene assays that measure ER bind-
ing-dependent transcriptional and transla-
tional activity; and c) cell proliferation assays
that measure the increase in cell number of
target cells during the exponential phase of
proliferation. Thus, these assays function at
different levels of biologic complexity. The
features, performance, and use of these assays
in screening for estrogenic activities of
endocrine disruptors have been reviewed and
discussed elsewhere (16–19).

Although numerous data sets exist in the
literature for various estrogenic compounds
using several in vitro assays, the relationship
between these assays has not been fully
explored. The literature generally focuses on
comparing performance of assays for individ-
ual pairs of chemicals. Few studies have
investigated the relationship among assays in
quantitatively detecting estrogenic activities
of chemicals with a wide range of structural
diversity and activity. This relationship is
important, considering that the assays traverse
various levels of biologic complexity and are
being used to detect and characterize potential
estrogens. Because the consistency and utility
of the information from the various assays are
unclear, data mining techniques can be used
to consolidate individual data sets and exam-
ine the combined data (20).

Data mining techniques have been rapid-
ly developed in the areas of genomics, clinical
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Substances that may act as estrogens show a broad chemical structural diversity. To thoroughly
address the question of possible adverse estrogenic effects, reliable methods are needed to detect
and identify the chemicals of these diverse structural classes. We compared three assays—in vitro
estrogen receptor competitive binding assays (ER binding assays), yeast-based reporter gene assays
(yeast assays), and the MCF-7 cell proliferation assay (E-SCREEN assay)—to determine their
quantitative agreement in identifying structurally diverse estrogens. We examined assay perfor-
mance for relative sensitivity, detection of active/inactive chemicals, and estrogen/antiestrogen
activities. In this examination, we combined individual data sets in a specific, quantitative data
mining exercise. Data sets for at least 29 chemicals from five laboratories were analyzed pair-wise
by X-Y plots. The ER binding assay was a good predictor for the other two assay results when the
antiestrogens were excluded (r2 is 0.78 for the yeast assays and 0.85 for the E-SCREEN assays).
Additionally, the examination strongly suggests that biologic information that is not apparent
from any of the individual assays can be discovered by quantitative pair-wise comparisons among
assays. Antiestrogens are identified as outliers in the ER binding/yeast assay, while complete
antagonists are identified in the ER binding and E-SCREEN assays. Furthermore, the presence of
outliers may be explained by different mechanisms that induce an endocrine response, different
impurities in different batches of chemicals, different species sensitivity, or limitations of the
assay techniques. Although these assays involve different levels of biologic complexity, the major
conclusion is that they generally provided consistent information in quantitatively determining
estrogenic activity for the five data sets examined. The results should provide guidance for
expanded data mining examinations and the selection of appropriate assays to screen estrogenic
endocrine disruptors. Key words: antiestrogens, chemical structure, data mining, endocrine dis-
ruptors, E-SCREEN assay, estrogens, estrogen receptor competitive binding assay, estrogen recep-
tors, MCF-7 cell proliferation assay, species sensitivity, yeast-based reporter gene assay. Environ
Health Perspect 108:723–729 (2000). [Online 26 June 2000]
http://ehpnet1.niehs.nih.gov/docs/2000/108p723-729fang/abstract.html



study, bioinformatics, cheminformatics, and
other research areas (21). It is an emerging
interdisciplinary research field that intersects
with computer science (database, artificial
intelligence, graphics, and visualization), sta-
tistics, and numerous scientific areas for
obtaining new knowledge. Generally, data
mining comprises a number of processes
(22): a) develop an understanding of the sci-
entific area; b) create a target data set on
which discovery is to be performed; c) evalu-
ate, clean, and preprocess the data; d) reduce
the data; e) choose a data mining task (decide
whether the goal is classification, regression,
clustering, description, modeling, etc.); f )
choose a data mining algorithm; g) mine the
data (i.e., search for patterns); h) interpret
mined patterns; and i) consolidate the dis-
covered knowledge (incorporate it into deci-
sion system, report, etc.).

Data mining can provide new insights,
such as predictability across assays, assay
strengths and weaknesses, and assay specifici-
ty and sensitivity, for the detection of a vari-
ety of classes of chemical structures with
estrogenic activity. In this paper we report a
data mining approach to investigate the
estrogenicity of structurally diverse chemicals
across three levels of biologic complexity.
We used four published data sets (23–26)
and one new data set (27) from three in vitro
assays for this study. 

Materials and Methods

Criteria for selecting data sets. To draw valid
conclusions from the analysis, we selected
the data sets for comparison based on the
following criteria (analogous to data mining
steps a), b), c), and d) mentioned above).
1) To ensure the assay’s applicability across a

broad range of chemical structures and
activity levels, data derived from the assay
must comprise a minimum of approxi-
mately 30 compounds that include various
estrogenic chemical classes, such as
steroids, synthetic estrogens, phytoestro-
gens, organochlorines, alkylphenols, mixed
or partial agonists/antagonists (type I antie-
strogens, such as tamoxifen), complete or
pure antagonists (type II antiestrogens,
such as ICI 164,384) (28), and other envi-
ronmental chemicals (e.g., bisphenol A,
phthalates). 

2) To enable a valid comparison and reach a
statistically significant conclusion, the data
sets from each assay should include suffi-
cient numbers of shared chemicals (at least
10 of the above) for cross-comparison.
These chemicals should represent each pri-
mary chemical class listed in 1) and the
range of biologic activity as measured by
relative binding affinity (RBA; ER binding
assays), relative potency (RP; yeast assays)
or relative proliferation potency (RPP;

E-SCREEN assay) should span at least 4
orders of magnitude (10,000-fold).

Based on these criteria, we selected five
data sets for analyses: the ER binding assay
data from Waller et al. (23) and Kuiper et al.
(24), the yeast assay data from Coldham et
al. (25) and Gaido et al. (26), and the
E-SCREEN assay data from Soto and col-
leagues (19,27,29). Part of the E-SCREEN
assay data [estradiol, ethinylestradiol, testos-
terone, diethylstilbestrol (DES), methoxy-
chlor, o,p´-DDT, p,p´-DDE, ICI 182,780,
butylbenzylphthalate, and bisphenol A] used
in this study have been reported by Andersen
et al. (19) and were provided by the Soto lab.
Anderson et al. (19) provided the details of
the experimental procedure. Progesterone
and atrazin were reported by Soto et al. (29).
We obtained the remaining E-SCREEN
data using the same assay conditions (27).
Because the E-SCREEN assay data present-
ed here were collected using the same previ-
ously peer reviewed assay method, they con-
stitute a self-consistent data set. Data sets
covered each common category of in vitro
assays that traverse different levels of biologic
complexity. 

End point units. The absolute concentra-
tions at which estradiol induced half-maxi-
mal activities were different for each assay
type. To make direct comparisons between
assays, we compared the relative activity of
each chemical to the reference endogenous
ligand 17β-estradiol (E2). Specifically, the
RBA in the ER binding assay is the ratio of
the molar concentration of E2 to that of the
competing chemical required to decrease
radiolabeled E2–receptor binding by 50%,
which is then multiplied by 100. Thus, by
definition, E2 has an RBA of 100. Inhibition
constants reported by Waller et al. (23) were
converted to RBAs using the Cheng-Prusoff
equation (30). The log RBA for Waller et al.
(23) ranges from 2.94 to –3.36 and for
Kuiper et al. (24) ranges from 2.67 to –2.

For the yeast assay, Coldham et al. (25)
computed the RP of the test compounds in
their data set by dividing the concentration of
E2 giving 50% induction of β-galactosidase
activity (EC50) by the EC50 of the test com-
pounds, and then multiplying these values by
100. The activity log RP for the Coldham et
al. data set ranges from 2.00 to –4.52. Gaido
et al. (26) determined the EC50 for each lig-
and by fitting the dose–response data to the
Hill equation and again computing the RP by
dividing the E2 EC50 by the EC50 of the test
compounds, multiplied by 100. The log RP
value for this data set (26) ranges from 2 to
–5.38. In both cases, the RP value for E2 was
100 by definition. The relative inductive effi-
ciency (RIE) in the yeast assay is the ratio
between maximal β-glactosidase activity
achieved with the test compound and that of

E2, multiplied by 100. By definition, E2 has
an RIE of 100.

The RPP for the E-SCREEN assay is the
ratio of the concentration of E2 needed for
50% of maximal cell yield to the dose of the
test compounds required to achieve a similar
effect, multiplied by 100. The RPP value for
E2 is thus set to 100. The log RPP value
ranges from 2.05 to –4.08. The relative pro-
liferative effect (RPE) is the ratio between the
highest cell yield obtained with the test
chemical to that obtained with E2, multiplied
by 100. The RPE value for E2 is by defini-
tion 100. The RPE distinguishes between full
agonists (RPE = 100) and partial agonists
(RPE ≤ 50) (31) and is formally analogous to
the RIE in the yeast assay. New data reported
here for the E-SCREEN was collected as pre-
viously described (19). 

United data sets. Table 1 shows the data
from the five sources used for comparison.
Data are shown only for those compounds
for which data are available from at least two
of the five different references, and are listed
as log RBA, RP, or RPP to enable plotting
over the observed range of about 6 orders of
magnitude. To attain the maximum number
of chemicals for comparison, we developed
united data sets (Table 1) separately for both
ER binding assays and yeast assays; it is the
united data sets that we will compare across
the assays. These united data sets were built
by first selecting a primary data set for each
assay type and then adding data from the
other data set as follows: 
• For each compound in the primary data set,

we used the actual value. We selected the
data sets of Waller et al. (23) and Coldham
et al. (25) as primary data sets for the ER
binding and yeast assays, respectively,
because they include more chemicals and
chemical classes than the other data sets.

• For each compound not in the primary data
set, we calculated the value for the united
data set from the correlation equations y =
0.93x – 0.24 (Figure 1) by adding the data
of Kuiper et al. (24) to the data sets of
Waller et al. (23) for the ER binding assay,
and y = 1.14x – 0.14 (Figure 2) by adding
the data of Gaido et al. (26) to the data set
of Coldham et al. (25) for the yeast assay. 

Results

Correlation between Similar Assays

ER competitive binding assay. We selected
two ER binding assays for analysis: one that
uses receptor transcribed from recombinant
human ER-α complementary DNA (cDNA)
(24), and one that uses the receptor from
mouse uterine cytosol (Table 1) (23). Eleven
common chemicals in the data sets have log
RBA values that traverse more than four log
units. Nine of 11 chemicals were suitable
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(active in both data sets) for inclusion in this
regression. Figure 1 shows a good linear cor-
relation (r 2 = 0.88) for these chemicals,
which indicates a limited range of RBA vari-
ability despite the species and ER subtype
differences between the ER sources. The
chemicals with the largest disparity are
coumestrol and genistein, which may reflect
different affinities for the human versus
mouse receptors. If these two chemicals are

omitted from the comparison, the correla-
tion coefficient is much higher (r 2 = 0.98).

Yeast-based reporter gene assay. For the
analysis, we used two yeast assay data sets,
which appear to be identical recombinant
yeast cell assays (25,26); both contain an
expression plasmid with a CPU1 metalloth-
ionein promoter fused to the human ER
cDNA and a promoter plasmid containing
two Xenopus vitellogenin EREs upstream of

the structural gene for β-galactosidase. A
quantitative comparison of the data sets
enables evaluation of the consistency and
replicability of this particular assay. There
are 13 common chemicals in the data sets,
but we included in the regression only the
10 chemicals that were active in both data
sets. These chemicals represent diverse
chemical classes and have RP values that
range over 106-fold (log RP from –4.5 to
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Table 1. Comparison of in vitro assays for those chemicals for which end points were available in at least two assays.

Binding assay Yeast assay E-SCREEN
Estrogen Wallera Kuiperb Unitedc Coldhamd Gaidoe Unitedf Sotog

classes Compound logRBA logRBA LogRBA log RP RIE log RP log RP log RPP RPE

Steroids and Estradiol 2.00 2.00 2.00 2.00 100 2.00 2.00 2.00 100
synthetic estrogens Dihydrotestosterone –1.59 –1.30 –1.59 –1.30 –1.00 –2.37 102

Estriol 1.27 1.15 1.27 –0.20 88 –0.44 –0.20 1.40 82
Estrone 1.77 1.78 1.77 0.98 100 0.98 0.64 95
Ethinylestradiol 2.94 2.94 1.95 100 1.95 2.05 92
Progesterone NAh NAh NA NAi NAi NA NAi

Testosterone –2.05 NAh –2.05 –3.00 0.8 –3.35 –3.00 –2.70 94
17α-E2 1.76 1.40 0.72 100 0.72 –0.10 90
5-Androstenediol 0.78 0.49 –1.64 31 –1.64
β-Sitosterol NAh NA –3.342 –2.78
Dehydroepiandrosterone –1.40 –1.54 –2.74 1.2 –2.74
4-Androstenedione NAh NA NAi NA
DES 2.57 2.67 2.57 1.87 100 1.80 1.87 1.20 88
Hexestrol 2.48 2.07 1.49 89 1.49
Dienestrol 2.35 1.95 1.40 84 1.40

Phytoestrogens Coumestrol 0.45 1.97 0.45 –0.17 75 0.11 –0.17
(natural products) Genistein –0.18 0.70 –0.18 –1.31 61 –1.31 –1.85 107

Zearalenone 1.64 1.64 –0.58 91 –0.58 0.77 Full
β-Zearalanol 1.20 0.88 –0.34 –0.34
Zearalenol 0.94 67 0.94 –0.36 Full

Organochlorides DDTs
Methoxychlor –2.42 –2.00 –2.42 –2.48 55 –4.70 –2.48 –3.30 55
o,p´-DDT –1.05 –1.05 –3.96 2.4 –4.90 –3.96 –2.78 96
p,p´-DDE NAh NA NAi NA –3.84 25
p,p´-DDT NAh NA –4.52 0.8 NAi –4.52 –3.40 71
o,p´-DDE –4.40 1.0 –5.38 –4.40

Polychlorinated biphenyls
2,4,6-TCB-4´-ol 0.73 0.73 0.00 67.6 0.00 –1.60 75
2,3,4,5-TCB-4´-ol 0.76 0.76 –0.09 77 –0.09 –1.84 63
2,5-DCB-4´-ol –0.14 –0.14 –0.21 65 –0.21 –2.51 68
3,3´,5,5´-TCB-4,4´-diol –0.88 –0.88 –1.80 83.5 –1.80
4-CB-4´-ol –1.33 –1.33 –1.22 73.3 –1.22 –2.52 37

Pesticides
Atrazine NAh NA NAi

Endosulfan –3.36 –3.36 –3.84 30
Kepone –0.73 –0.73 –3.36 84
Lindane NAh NA Activej

Alkylphenols 4-tert-Butylphenol –2.79 –2.79 –3.36 60
4-tert-Octylphenol –0.71 –0.71 –3.44 43 –3.44
Nonylphenol –0.51 –0.51 –2.66 38.3 –1.70 –2.66 –2.54 92
4-Octylphenol –2.52 22.3 –2.52 –2.26 82

Antiestrogens Tamoxifen 0.85 0.55 –2.33 46 –2.33 –1.3 11
4-OH-Tamoxifen 2.25 1.85 –2.14 56 –2.14 0.58 22
Clomiphene 1.40 1.06 –2.64 –2.17 –0.64 31
Nafoxidine 1.64 1.29 –2.53 –2.07 –1.10 27
ICI 164,384 1.93 1.56 –2.81 –2.31 NAi

ICI 182,780 2.64 2.64 NAi

Other chemicals Phthalates
Butylbenzylphthalates –2.47 –2.47 –3.40 5.3 NAi –3.40 –3.60 73
Di-n-butylphthalate –2.59 –2.59 NAi NA –4.08 40

Diphenylalkanes
Bisphenol –0.75 –1.30 –0.75 –2.30 51 –2.18 –2.30 –2.78 89

NA, not active. Chemicals that were inactive in at least one of the five data sets are indicated in bold. 
aData from Waller et al. (23). bData from Kuiper et al. (24). cUse Waller’s data and add Kuiper’s data by using the correlation equation y = 0.93x – 0.24. dData from Coldham et al. (25).
eData from Gaido et al. (26). fUse Coldham’s data and add Gaido’s data by using the correlation equation y = 1.14x – 0.14. gData from Soto et al. (27,29).hProvided as “less than value”;
inactive chemicals were not corrected in the united data set and are not shown in regression line. iNA indicated in the original paper (26); inactive chemicals were not corrected in the
united data set and are not shown in regression line. jVery weak activity was observed. 



2.0). Figure 2 shows a high correlation coef-
ficient (r 2 = 0.91), which is a strong indica-
tor of good reproducibility across different
studies. However, we observed a large dis-
crepancy for methoxylchlor, which may be
due to sources of error such as chemical
impurities (32). 

In addition, we examined the relation-
ship between the log RP and the RIE for the
data set of Coldham et al. (25) (Figure 3).
The values for the two partial agonists
tamoxifen and 4-OH-tamoxifen lie close to
the regression line (r 2 = 0.78) and have RIEs
of approximately 50%. Estradiol derivatives,
DES derivatives, phytoestrogens, and poly-
chlorinated biphenyls (PCBs), which are rel-
atively strong estrogens, have RIEs > 50% of
E2. In contrast, those lower potency chemi-
cals, such as androgens, alkylphenols, DDTs
(except methoxychlor), and phthalates have
RIEs < 50% of E2. Six of the lowest potency
chemicals had RIEs of 0.8–5.3%. This indi-
cates that a chemical with lower potency
tends to have lower inductive efficiency in
this particular assay condition. 

Comparison Between Different Assays
ER competitive binding assay versus yeast-
based reporter gene assay. The ER binding
assay directly measures the RBA of ligands
for ER, whereas the reporter gene response
includes effects from not only ligand–ER
binding but also ER–ERE interactions, tran-
scriptional complex effects, and translational
effects. Although different in the nature and
biocomplexity of their end points, both
assays measure receptor–ligand interaction,
for which the RBA is a direct measure and
the RP is an indirect measure.

Figure 4 shows a plot of log RP versus log
RBA, which is constructed by using the unit-
ed data sets (see “Materials and Methods”) to
reduce redundant data points and to increase
the number of chemicals for comparison. In
general, except for the five antiestrogens, the
two assays correlate very well for estrogenic
agonists. The five antiestrogens are conspicu-
ous outliers with RPs 100- to 1,000-fold
lower than would be expected from their
RBAs. These antiestrogens traverse a wider
range of RBAs (~25-fold) than the 3-fold
range for RP, indicating that the yeast assay
has limited and relatively constant sensitivity
to these antiestrogens (25).

The r 2 value (0.53) for the comparison of
the ER binding assay and the yeast assay was
much lower when the antiestrogens were
included (Table 2). With the antiestrogens
excluded, we obtained a good linear relation-
ship (r 2 = 0.78) between the ER binding and
yeast assays across all chemical classes (Table 2
and Figure 5). Inspection of data points for
individual compounds shows good agreement
for steroids and synthetic estrogens, indicating

that their binding to the ER is both the initi-
ating and rate-determining mechanism for
these estrogen agonists. Additionally, a rea-
sonable, but less good, linear correlation exists
for the seven chlorinated chemicals. However,
a relatively large disparity is found for several
chemicals, including 4-tert-octylphenol, dihy-
drotestosterone (DHT), and o,p´-DDT.
Although many factors could cause the dis-
parities, chemical impurities may be a possible
source of disagreement between assays.

ER competitive binding assay versus the
E-SCREEN assay. In the E-SCREEN assay,
estrogens recruit MCF-7 cells into the cell
cycle. Estradiol exponentially increases the
cell number (doubling time = 36 hr) (33).
We found a very good linear relationship (r 2

= 0.86) between the E-SCREEN and ER
binding assays across all chemical classes and
across a 106-fold range (log RPP from –4.08
to 2.05) of activity values (Table 2, Figure 5),
which is in agreement with the observation of
Weise et al. (34) for a set of steroids. The r 2

of 0.86 is virtually identical to the value of
0.85 without partial agonists and antagonists.
The two natural estrogens estradiol and estri-
ol had a higher proliferative activity than the
activity predicted by their receptor binding
affinity, which is in agreement with previous
observations (35). The partial and mixed
antiestrogens—tamoxifen, 4-OH-tamoxifen,
nafoxidine, and clomiphene—also had rela-
tively high RPPs that correlated well with
their RBAs in the ER binding assay, but their
RPEs were much lower than that observed
with estradiol (Figure 6), indicating their par-
tial agonist effect. In contrast, the two pure
antiestrogens, ICI 164,384 and ICI 182,780,
have a higher binding affinity in the ER bind-
ing assay and induced no response in the
E-SCREEN assay; therefore, they could not
be plotted in Figure 5. Thus, a pure antiestro-
gen can be identified using a combination of
the ER binding and E-SCREEN assays. 

E-SCREEN assay versus yeast-based
reporter assay. The correlation between the E-
SCREEN assay and the yeast assay is shown
in Figure 7. The r 2 was 0.56 when antiestro-
gens were included and 0.72 when they were
excluded (Table 2). Similar to the compari-
son between the ER binding assay and the
yeast assay, the antiestrogens were outliers.
Several organochlorines and estriol were sig-
nificant outliers. The correlation between the
ER binding assay/E-SCREEN pair was
stronger than that for the E-SCREEN/yeast
assay pair.

Discussion

Our results present quantitative comparisons
between three different assay types. Each
assay measures different end points at differ-
ent levels of biologic complexity of estrogen
action (i.e., receptor binding, expression of a
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Figure 1. Comparison of the human and mouse ER
binding assays. DHT, dihydrotestosterone. We
compared log RBAs obtained for mouse ER (20) to
those for human ER-α (21). With genistein and
coumestrol included, the r 2 = 0.88 and the regres-
sion equation is y = 0.93x – 0.24. With genistein
and coumestrol excluded, the r 2 = 0.98, and the
regression equation is y = 1.02x – 0.03. 

Figure 2. Reproducibility of the yeast assay. We
correlated the data set of Gaido et al. (26) with that
of Coldham et al. (25). With methoxychlor included,
the r 2 = 0.91 and the regression equation is y =
1.14x – 0.14. With methoxychlor excluded, the r2 =
0.96 and the regression equation is y = 1.10x. 
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reporter gene, and cell proliferation). The
comparisons allow conclusions to be drawn
concerning the characteristics and perfor-
mance of these assays individually and in
pair-wise combinations.

Chemicals that exhibit estrogen-like
activity have a very broad range of structural
diversity (23,25,29). A common structural
feature for steroids, DES derivatives, and
most phytoestrogens is the presence of two
rings (one of them usually a phenolic ring)
separated by two carbons. Chemicals with
two rings either separated by one carbon
atom (DDTs and bisphenol A derivatives),
connected directly (PCBs), or possessing
only one ring (alkylphenols, phthalates,
kepone) typically have relatively lower bind-
ing affinities as compared to chemicals with
two rings with two atoms separating them.
The chemicals in this study cover all these
structural features as well as activity measures
based on RBA, RP, and RPP that traverse 4
to over 6 orders of magnitude. 

The linear relationships for estrogen
binding or activity among the three assays
are generally consistent. This supports the
idea that ER binding is a major determinant
or rate-determining step in the assays using
living cells.

A literature survey revealed a great vari-
ability in binding data for certain com-
pounds (36). For example, an approximately
10-fold range of binding affinity has been
observed for E2 in various species (7), and
p,p´-DDT binds to the human ER but not
to the rat ER (37). However, similar vari-

ability exists for binding affinities in assays
conducted in different laboratories, even
though the same species were used. For
example, genistein shows a 20-fold differ-
ence for RBA values in MCF-7 cells between
the observations reported by Martin et al.
(38) and Zava et al. (39), whereas nonylphe-
nol showed a 10-fold RBA difference
between the findings reported by Waller et
al. (23) and Shelby et al. (40) in mouse uter-
ine cytosol. These considerations make it
difficult to distinguish experimental devia-
tions from species differences for RBAs
when an individual chemical is compared.
Based on the good linear correlation of log
RBAs for two data sets from different species
(human and mouse), we found that species-
related differences in RBA are not high for
most ligands examined (Figure 1). These
results are consistent with the findings from
a quantitative structure–activity relationship
(QSAR) model used to extrapolate across
species (41). However, we observed relatively
larger disparities for phytoestrogens in the
cross-species comparison, which may be due
to binding differences between pure human
ER-α used by Kuiper et al. (24) and the
mixture of predominately α and a small
amount of β isoforms in rodent uterine
cytosol (42) used by Waller et al. (23).
Similar observations have been reported
regarding species and receptor subtype sensi-
tivity of phytoestrogens (43,44).

Antiestrogens are chemicals that antago-
nize the actions of estrogens through several
possible mechanisms (45). Six antiestrogens

examined here inhibit E2-induced responses
through interactions with ER. Tamoxifen, 4-
OH tamoxifen, clomiphene, and nafoxidine
are partial agonists/antagonists (type I antie-
strogens), and ICI 164,384 and ICI 182,780
are pure antagonists (type II antiestrogens).
Because the yeast assay does not directly mea-
sure antagonist activity, antiestrogens could
be mistaken to be weak agonists only.
Moreover, a good correlation between a
chemical’s log RP and RIE (Figure 3) indi-
cates that the measurement of a chemical’s
efficiency in the yeast assay also cannot dis-
tinguish the partial agonist activity of type I
antiestrogens from strong or weak agonists.
Thus, like the ER binding assay, the yeast
assay alone cannot identify antiestrogens.
However, the activity of a chemical in the
yeast assay as compared to the ER binding
assay allows the discrimination of the partial
agonist activity of type I or II antagonists
from that of full agonists. Specifically, chemi-
cals that have RBAs approximately 2 log
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Table 2. Summary of correlation coefficients for in vitro assay comparisons.

Cross in vitro assay comparison r 2 without antiestrogens r 2 with antiestrogens

Binding assay vs. yeast assay (Figure 4) 0.78 0.53
Binding assay vs. E-SCREEN (Figure 5) 0.85 0.86
E-SCREEN vs. yeast assay (Figure 7) 0.72 0.56

Figure 4. Comparison of the ER competitive bind-
ing assay to the yeast assay. The united data sets
were used for both assays. The r 2 = 0.78 (Table 2)
and the regression equation is y = 0.77x + 0.83
(with antiestrogens excluded). 
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Figure 5. Comparison of the ER competitive bind-
ing assay with the E-SCREEN assay. The united
data set was used for ER binding assay. The r 2 =
0.85 (Table 2) and the regression equation is y =
0.98x – 1.35 (without inclusion of antiestrogens). 
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Figure 6. The correlation of log RPP against RPE for
the E-SCREEN assay. The dashed lines are the RIE
at 50% of E2 and the log RP at –1.5, respectively. 

Figure 7. Comparison of the E-SCREEN assay with
the yeast assay. E3, estriol. The united data set
was used for the yeast assay. The r 2 = 0.72 (Table
2) and the regression equation is y = 0.88x + 0.19
(with antiestrogens excluded).
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units higher than predicted from the yeast
assay have the potential to be a type I or II
antiestrogen. This approach could be useful
in a drug discovery for screening potential
antiestrogens in a high throughtput mode. It
is important to note that some antiestrogenic
chemicals do not act via ER binding. For
example, aryl hydrocarbon receptor agonists,
such as dioxins and PCBs, also act as antie-
strogens (46–48) by causing down-regulation
of ER (49), thus decreasing with DNA bind-
ing (50). Such antiestrogens cannot be iden-
tified by comparing binding and yeast assays.

The E-SCREEN assay measures the RPE,
whereas the same measure in the reporter
gene assay is the RIE. Although the RPP
value of 4-OH-tamoxifen in the E-SCREEN
assay is close to its RBA value in the binding
assay, its RPE is approximately 25% of estra-
diol, which is similar to the response in the rat
uterotrophic assay (51). Thus, in the
E-SCREEN assay, type I antiestrogens are
detected as partial agonists (tamoxifen, 4-
OH-tamoxifen, clomiphene, and nafoxidine),
whereas type II antiestrogens are inactive (ICI
164,384 and ICI 182,780). Hence, type II
antagonists are active in the ER binding assay
and inactive in the E-SCREEN assay.
Although it is possible to infer antagonistic
activity by comparing the behavior of these
compounds in the three assays discussed here-
in, antagonistic activity must be verified by
demonstrating the ability of a chemical to
inhibit estrogen action in vivo. 

There were some apparent discrepancies
in the detection of activity using the three in
vitro assays. Specifically, except for the two
ICI chemicals, nine chemicals were shown to
be inactive in one of the three assays (indi-
cated in bold in Table 1); these are steroidal
chemicals, organochlorines, and phthalates.
Progesterone was inactive in all three assays,
indicating that it could be used as a negative
control for these assays. 4-Androstenedione
and atrazine showed consistent undetectable
activity in at least two assays. β-Sitosterol,
butylbenzylphthalate, di-n-butylphthalate,
p,p´-DDE, p,p´-DDT, and lindane gave
inconsistent responses in at least two assays.
All of the inconsistent chemicals had low
activity in the assays that detected activity,
and they had nondetectable activity or an
activity listed as less than a cutoff value in
the other assays. Among the six inconsistent
chemicals, only the two phthalates showed
positive activity in the ER binding assay. In
contrast, three of the five inconsistent chem-
icals in the yeast assay (β-sitosterol, butyl-
benzylphthalate, and p,p´-DDT) and all five
of the inconsistent chemicals in the
E-SCREEN assay exhibited activity, which
indicated that these two assays are more sen-
sitive in detecting low potency estrogens
than the ER binding assay. It is important to

note that most of these inconsistent chemi-
cals had marginal activity in one assay but
no detectable response in the others.

In the E-SCREEN assay, only 4 of 19
(21%) low potency (log RPP < –1.5) chemi-
cals had an RPE < 50% of estradiol (Figure
6). In contrast, 12 of 16 (75%) low potency
chemicals (log RP < –1.5) in the yeast assay
had an RIE < 50% of estradiol (Figure 3).
Most of these chemicals are androgens,
alkylphenols, DDTs, and phthalates. This
finding, combined with the linear correlation
of RIE with log RP, suggests that these
results are inherent to the reporter gene con-
struct, and demonstrate that the yeast assay
has lower resolving power measured by the
RIE or RPE than by the E-SCREEN for low
potency chemicals. Recently, Harris et al.
(52) reported that the RIE for phthalates
increased as the incubation time proceeded;
this suggests that the incubation times used
in the data sets analyzed here may have con-
tributed to the low RIEs.

There are a several sources of error that
should be examined in comparing the results
of the three assays. One is the reproducibility
of results from different labs performing the
same assay. Because the results of the two
yeast assays were analyzed differently, error
could be introduced in the comparison.
Gaido et al. (26) fit their results to a
Michaelis-Menten equation with a Hill coef-
ficient and estimated the EC50, whereas
Coldham et al. (25) recorded the EC50 rela-
tive to the EC50 of estradiol for chemicals
with an RIE > 50%. For chemicals with an
RIE < 50%, they calculated the concentration
of estradiol and the test chemical that gave the
same activity values. However, the good linear
correlation between the two assays demon-
strates the reproducibility of the yeast assay,
even when the data are analyzed differently.
Conflicting outcomes were found for two
chemicals that were not included in the corre-
lation analysis. Coldham et al. (25) reported
that butylbenzylphthalate and p,p´-DDT
were marginally active, but Gaido et al. (26)
reported that they were inactive. This suggests
that for low potency chemicals near the limit
of resolution of the assay, inconsistent results
may be obtained. It is important to define the
limits of assay resolution for these and other
assays in order to have confidence in the
activity value for low potency chemicals.

Another source of error in comparing
either identical or different assays is chemical
purity. Technical grade methoxychlor con-
tains more than 50 impurities (53,54), of
which monohydroxymethoxychlor olefin and
monohydroxymethoxychlor are most likely
the active components. Their ER binding
affinities are close to that of 2,2-bis (p-hydrox-
yphenyl)-1,1,1-trichloroethane (HPTE) (55).
In addition, Blair et al. (55) reported that

99% pure methoxychlor is inactive in binding
to the ER and 95% pure methoxychlor actu-
ally competes with E2 at a 100,000-fold lower
binding affinity. Nonylphenol is a mixture of
congeners (56). In our study, we determined
that octylphenol and nonylphenol (both tech-
nical grade from ChemService, West Chester,
PA) are 50- and 40-fold more potent, respec-
tively, than reported by Andersen et al. (19)
for pure 4-n-octylphenol and 4-n-nonylphe-
nol. This is consistent with early E-SCREEN
results by Soto et al. (29) and with ER bind-
ing assay data from Blair et al. (55). The
purity of chemicals may vary among batches
from the same manufacturers and among
diverse manufacturers. This may explain why
the largest errors were found for these two
chemicals in comparing the data sets of
Coldham et al. (25) and Gaido et al. (26).
The issue of chemical purity should be given
serious consideration in both the experimen-
tal design phase and in evaluating results
within and across laboratories. It would be
desirable to assemble a common set of chem-
icals of defined source and purity for use
across laboratories. 

Our analysis suggests that although there
is general agreement among the three assays,
there are certain performance characteristics
and sources of error that should be considered
in the use of the assays, either alone or in com-
bination. For purposes of prioritization, some
degree of error may not be of great concern
because these chemicals would be examined
further at higher tiers in the test battery (4).

Assay comparisons using data mining
techniques are very different from other
published comparisons among estrogens
reported in the literature. Most of the publi-
cations (19,25,57) have focused on an indi-
vidual chemical across assays. In contrast,
data mining techniques allow the use of a
large database and statistical analysis meth-
ods to explore the inherent relationships and
patterns between assays for a broad range of
structurally diverse chemicals and activities.
Although we used a simple linear regression
method, the knowledge acquired and the
patterns discovered are obvious.

Furthermore, although beyond the scope
of this paper, additional benefits can also be
anticipated from conducting analyses such as
the one we are reporting. For instance, few
data sets reported in the literature cover a
variety of chemical classes and/or exist for a
large number of estrogens assayed under
identical conditions. Appropriate quantitative
comparisons allow large data sets to be built
from small sets, as we did here for the united
data set. Knowledge of sources of error is
important for the integrity of such united
data sets, which can be used to extract knowl-
edge by meta-analysis for predicting activity
or toxicity. Some computational approaches
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have been used for a similar purpose using
large data sets. For example, QSAR models
have been constructed for predicting the bio-
logic activity of untested chemicals (58); clas-
sification models have been developed for
categorizing chemicals based on their biolog-
ic activity range (59); and rule-based models
can be constructed for selecting the combina-
tion of short-term assays that best predict
long-term assay outcomes. The use of such
computational predictive models, in con-
junction with the methods of comparative
analysis reported here, could greatly facilitate
the process of identifying chemical com-
pounds with endocrine-disrupting potential. 
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